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Abstract—This paper presents accurate three-dimensional elasticity solutions for free vibrations of
six types of plates having free lateral surfaces, two opposite sides simply supported, and two other
sides having combinations of simply supported, clarped, and free boundary conditions. The
solution methodology adopted in the present work first reduces the spatial variables in the governing
elasticity equations to two by using displacement functions in the forms which satisfy the boundary
conditions of the assumed simply supported sides. The eigenvalue equations are then formulated
from the reduced governing equations and the boundary conditions via the differential quadrature
method. The numerical results include the first nine natural frequencies of the six plate configurations
for combinations of three aspect ratios and two thickness ratios. These results are supported by
appropriate convergence studies and comparisons with the results of other authors. © 1997 Elsevier
Science Ltd.

1. INTRODUCTION

Two-dimensional theories, such as the classical thin plate theory (CPT), first-order shear
deformable plate theory (FSDPT), and the higher-order shear deformable plate theories
(HSDPT’s), are mechanics of materials and applied elasticity approaches for the static and
dynamic flexure of plates. These theories offer in most situations, if not all, accurate and
reliable solutions for the analysis and design of plates and plate systems. However, three-
dimensional elasticity analysis of the plate problems has attracted quite a number of
researchers. T A three-dimensional analysis does not rely on any hypotheses concerning the
kinematics of deformation and, therefore, such analyses not only provide realistic results
but also bring out physical characteristics which can not otherwise be predicted by two-
dimensional analyses. Furthermore, three-dimensional elasticity solutions provide a real
basis for assessing the results of the two-dimensional theories.

Looking into the literature, one finds that the available three-dimensional elasticity
solutions of rectangular plates are very limited with respect to the boundary conditions.
The application of calculus of variations to the energy functional of three-dimensional
elasticity leads to as many as eight sets of a triplet of boundary conditions at each side
of a plate. Thus, the number of plate configurations based on mathematically plausible
combinations of boundary conditions on the six faces of a plate would be extremely large.
The boundary conditions of practical interest are the ones in which top and bottom
(horizontal) surfaces are free and on each vertical side, there is one of the simply supported,
clamped, or free conditions. Such conditions give rise to 21 plate configurations. However,
even with this reduced size, the vibration analysis through three-dimensional elasticity is a
formicable task. The reason for this is that analytical solutions are possible only for some
specific cases and, in general, analysis has to be carried out numerically.

A set of plate configurations which offers advantage in analytical and semi-analytical
solutions is one having two opposite sides simply supported; in those cases the three
displacement components can be represented by trigonometric sine and cosine functions of

t Since such analyses do not impose any restriction on the thickness, in the related works, thick plates have
also been referred to as parallelepipeds.
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the coordinate direction perpendicular to the simply supported sides. Such a representation
satisfies identically the boundary conditions of the simply supported sides and results in
reduction of one spatial variable from the governing differential equations and the remaining
boundary conditions as the trigonometric terms cancel out from both sides of the
equations.t In the case of a plate simply supported on all four sides (the SSSS plate),f
the governing partial differential equations are actually reduced to ordinary differential
equations with respect to the through-thickness spatial variable; the reduced equations
may then be solved analytically or numerically.

Among the solutions of simply supported plates, one comes across the works of Pagano
(1969, 1970) who considered static bending of infinitely long and finite size composite
laminates under sinusoidal lateral loadings. In these works the elasticity solutions were
compared with the CPT solutions and the limitations of the latter theory were pointed out.
Srinivas et al. (1970a, b, ¢) presented a very complete work on bending, vibration, and
buckling analyses of plates of both isotropic and orthotropic materials. These works
compared the elasticity solutions with the CPT and FSDPT solutions. The most important
contribution of these works was the identification of certain vibration and buckling modes
which could be obtained from the elasticity solutions alone. Based on the analysis of
Srinivas et af., Wittrick (1987) worked out a detailed analytical investigation of the elasticity
solution of simply supported plates for eigenvalue problems of buckling and free vibration
and for static deflection under sinusoidal lateral loading. Another significant contribution
is the work of Noor (1973a, b; 1975) who used an efficient finite difference scheme for the
solution of reduced ordinary differential equations for vibration and buckling analyses of
simply supported plates comprising of a large number of orthotropic layers.

Early efforts on numerical vibration analysis through three-dimensional elasticity
equations include the work of Cheung and Chakrabarti (1972); these authors used the
finite layer method and obtained natural frequencies of five different plate configurations
(CCCC, CCCF, SCCS, SCSC, and SSSC plates). Iyengar and Raman (1980) applied the
method of initial functions to the problem and reported frequencies of SCSC and CCCC
plates. In their work, Cheung and Chakrabarti (1972) assessed the accuracy of their results
on the basis of comparisons with the results of Srinivas ez al. (1970a) for frequencies of
simply supported plates. Iyengar and Raman (1980) compared their results with only those
of Cheung and Chakrabarti (1972). In the absence of results for comparison and even
otherwise, numerical results need to be supported by appropriate convergence analyses
which often provide a sound basis for assessing the accuracy of results ; both of these works
did not include analyses of this kind. In this regard, recent works of Liew et al. (1993, 1994,
1995) are highly commendable in that comprehensive investigations were carried out and
detailed results were presented for frequencies and mode shapes of SSSS, SCSC, SFSF, and
CCCC plates. In these works, the solution method is based on three-dimensional Ritz
formulation with orthogonal polynomials and convergence analyses have been carried out
in sufficient detail. The results appear to be of very reliable accuracy.

Among other solutions, mention may also be made of the elasticity solutions of the
‘complicated’ fully free (FFFF) and cantilevered (CFFF) plates. Fromme and Leissa (1970)
presented an exact analysis for the vibration of FFFF plates using an extended Fourier
series method (referred to as the method of associated periodicity) ; the numerical results
were, however, reported for infinitely long plates only. The method of analysis of Hut-
chinson and Zillmer (1983) was based on series solutions for all possible modes of vibration
of FFFF plates of finite dimensions. Very recently, Young et al. (1996) have considered
the vibration problem of FFFF plates with depressions, grooves or cut-outs; the solution
was obtained by the Ritz method using polynomials as trial functions. The elasticity solution
for vibration of CFFF plates was presented by Leissa and Zhang (1983). The only other
work on such plates is that of Liew ez al. (1993) in which a table is provided comparing

+ Thisisindeed a well known general features which is also advantageous in classical thin and shear deformable
analyses of rectangular plates.

1 A standard notation wherein plates are designated by four letters ordered to indicate the boundary conditions
of sides x = 0, y = 0, x = a, and y = b see Fig. 1. The letters S, C, and F denote simply supported, clamped, and
free conditions, respectively.
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these authors’ calculated frequencies with those of Leissa and Zhang (1983). It needs to be
mentioned here that some work is also available on elasticity solutions of twisted can-
tilevered panels; however, this is unrelated to the present work which is concerned with
only initially flat rectangular panels.

The present work concerns three-dimensional elasticity solutions for vibration analysis
of plate configurations having two opposite (vertical) sides simply supported and general
boundary conditions at the other two sides. The interest in this work comes from the fact
that, as mentioned earlier, by having two opposite sides simply supported, numerical
solutions may be handled in semi-analytical manner. In fact, this advantage has been taken
by Mizusawa and Takagi (1995) by employing trigonometric solutions between the two
opposite simply supported sides in a semi-analytical solution for such plates using the spline
prism method. By having combinations of simply supported, clamped, and free boundary
conditions at the other two sides, one can have six plate configurations and, the work of
Mizusawa and Takagi (1995) is possibly the only one in which all six cases have been
considered in totality. However, it is noted that, besides the exact solutions of SSSS plates,
some of these configurations have been considered in earlier mentioned works (Cheung
and Chakrabarti, 1972 ; Iyengar and Raman, 1980; Liew ef al., 1993, 1994, 1995) as well.

The present work offers an alternate solution method for the three-dimensional elas-
ticity analysis for vibration of plate configurations of interest. In the following description,
advantage is taken of having the two opposite sides simply supported to reduce the number
of spatial variables in the governing elasticity equations to two. The solution of the reduced
two-dimensional equations is then obtained via the differential quadrature method (DQM).
In this paper, details of the DQM are not given; interested readers may refer to the works
of Bellman et al. (1971, 1972) who originated the method and a recent survey paper of the
present investigators (Bert and Malik, 1996a). However, the following analysis includes
quadrature formulation of the reduced two-dimensional equations and their boundary
conditions. Also included in the following analysis is the special case of the pure shear
mode of vibration. In this case, the governing equations become decoupled and may be
solved to obtain exact closed-form frequency equations for all cases of boundary conditions
considered in the present work.

The numerical results include the first nine vibration frequencies of the six plate
configurations for combinations of three aspect ratios and two thickness ratios. Of course,
these results are supported by convergence studies and comparisons with the results of
other investigators.

2. GOVERNING ELASTICITY EQUATIONS

Consider an isotropic-material plate (or a parallelepiped), Fig. 1, bounded by the
coordinate planes x =0, a, y = 0, b, and z = 0, 4. The governing elasticity equations of

Fig. 1. A rectangular plate.
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the plate undergoing simple harmonic oscillations in a principal vibratory mode are written
in a nondimensional form as (Srinivas et al., 1970a)

1 0 ¢ é
2 1% I R B . — _02
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where (U, V, W) = (u,vw)/h are the dimensionless displacement components in the x, y,
and z directions, respectively; (X, Y, Z) =(x/a, y/b, z/h) are the normalized coordinates;
o = a/h is the lateral aspect ratio; A = a/b is the in-plane aspect ratio; v is the Poisson’s
ratio;
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is the volumetric dilatation; and Q is the dimensionless frequency
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in which w is the circular frequency (rad/s); and E and p are, respectively, the elastic
modulus and density of plate material.

Let the plate be simply supported on the sides x =0, g, i.e., X =0, 1; the boundary
conditions on these sides are prescribed by the normal traction and the tangential dis-
placements being equal to zero so that

au
x=0 V=0 W=0 atX=0,1. (2

The displacement components satisfying the boundary conditions on the x-sides, eqn
(2), may be expressed as

U=U0(Y,Z)cosmX, V=V(Y,Z)sinmX, W= W(Y,Z)sinmX 3)
where # = mn and m is an integer.

Substituting eqn (3) in eqn (1). one can express the governing equations in terms of
reduced displacement variables U, 7, and W as
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It is noted that the original three-dimensional elasticity equations, eqn (1), have now been
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reduced to two-dimensional equations described in a normalized square domain0 < ¥ < 1
0gsZ<1.

The sides y = 0, b may be either simply supported, clamped, or free. At a simply
supported y-side, with zero normal traction and zero tangential displacements, the boundary
conditions in terms of reduced displacement variables become

s

U=0, —=0, W=0 at¥Y=0and/orl. %)

U=0, V=0, W=0 atY=0and/orl. (6)

At a free y-side, the conditions of components of traction equal to zero may be written as

3Ly W o, w2 2% 0, aty =o0andior

avtax™V wt vy ez =Y ez Ty =0 at¥=0andjor
and using eqn (3), these conditions become

ov - l—v 8V oW ov oW

Aa—Y mV =0, mU— . Aay—aaZ—O, ocﬁ + 4 a7 =0 atY=0and/orl.

(7)

The lateral surfaces of the plate are assumed to be free so that the traction components
are zero on z = 0, A. These conditions may be written as

U0 oo Y I W atz=0andjor
ztax =" Yz ey = e Tlayt Ty vz =0 atZ=0andjor

which, on using eqn (3), become

U =0, L o o=l 1z —0andl. (8
ezt Gy Thay =0 MU—iGy sy =0 2 an ®)

3. SOLUTION METHOD

In order to formulate an eigenvalue problem from the governing differential equations
and the relevant boundary conditions, eqns (4)—(8) are transformed into algebraic equations
via the differential quadrature method. For this purpose, consider the quadrature grid
shown in Fig. 2 having a set of N, x N, sampling points. In accordance with the DQM, the
partial derivatives of a function F(Y, Z) at a point Y;, Z, may be expressed by the following
quadrature rules (Bert and Malik, 1996a)

r N, 5 N, r+s N,
PF oy oapr, TE| —¥epr, TE S ARBYE, ©)
5 Yr Y.Z; k=1 i 625 Y.Z; I=1 (3 Y’ 8Z° Y.Z; k=11=

where F;, = F(Y,, Z)), and 4} and B are the weighting coefficients of the partial derivatives
with respect to the Y- and Z-coordlnates, respectively. The weighting coefficients depend
on the assumed form of the test functions and the distribution of the sampling points; the
techniques of determining these coefficients may be found in the literature (Bert and Malik,
1996a).

Using the quadrature rules, eqn (9), in eqn (4), one obtains the quadrature analogs of
the governing differential equations as
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where the ranges of indices i and j are
i=23,...,(N,—-1); j=23,...(N.—1)

i.e., the quadrature analogs of the governing differential equations are written at the interior
points of the quadrature grid shown in Fig. 2 yielding 3 (¥, —2) x 3(N,—2) linear equations.
Additional equations to complete the set of 3N, x 3V, linear equations are obtained from
the quadrature analogs of the boundary conditions written at the boundary points of the
quadrature grid.
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The quadrature analogs of the boundary conditions on the lateral surfaces are written
from eqn (8) as

N,

“ZB Oy+mW, =0, aZB“’V,/ﬂZA(“ij:o,

N,

1—
.y Z ALY V,j——~<x z BOW,=0 (13)

wherei=1,2,.., N, and,j=1and N, for Z = 0 and 1, respectively. It is noted that these
quadrature analog equations, eqn (13), are common to all types of plates being considered
herein.

In writing the quadrature analogs of the boundary conditions of the y-sides, it is noted
that at the corner points of the solution domain the conditions of both the y- and z-sides
apply simultaneously. This situation may be taken care of by having one point close to
each corner point at the ends of each of the two y-sides. As shown in Fig. 2, this is simply
done be adding one grid line adjacent to each of the z-sides separated by a very small
distance & of the order 107* to 107 (on the normalized scale).

In order to illustrate the quadrature analog of the boundary conditions in the y-sides,
consider a plate having the ¥ = 0 and 1 sides as simply supported and free, respectively.
Then the quadrature analogs of the boundary conditions of the side ¥ = 0 may be written
from eqn (5) as

Nv
U, =0, kz APV, =0, W,=0, i=1 (14)
=1

and similarly, from eqn (7), the quadrature analogs of the boundary conditions of the side
Y = | may be written as

“J‘ZB(”W/U=O,
E N,
aY BPVy+AY APW, =0, i=N, (15)
=1 k=1

where j =2, 3,..., N.—1. It may be noted that due to the small value of 3, the lines
j=2 and j= N.—1 are very near to the boundary lines j =1 and j = N,, respectively.
Consequently, in eqns (14) and (15), the boundary conditions of the Y-sides are invoked
at points very close to the corner points.

For plate configurations with other types of boundary conditions on the y-sides, since
eqn (13) remain common, only the set of quadrature analog equations for the boundary
conditions of the y-sides will be different.

The eigenvalue equations of the problem may be constructed from the quadrature
analog equations of the governing equations and the boundary conditions. The details of
the same may be found in some other works of the present investigators (Bert and Malik ;
1996a, b).

4. PURE SHEAR MODES OF VIBRATION

In case of the pure shear modes of vibration, the volume dilatation equals zero, i.e.,

! w
ou /Ia—[i L =0 (16)

©=x vy T4z

and consequently, eqn (1) is reduced to the following:
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VU, V, W) = —QU, V, W). a7

It is noted that there is no coupling in these equations. However, the displacements in pure
shear modes are indeed coupled ; coupling comes through the boundary conditions.

Using eqn (3) in eqn (17), one obtains the governing equations of pure shear modes
of vibration in terms of the reduced displacement variables as

o? FZ R N o
w2 2 T o vy =, 7w, (18)
oY? VA

The boundary conditions on simply supported or clamped y-sides remain the same as
given by eqns (5) and (6). However, on a free y-side, the condition of zero normal traction
in eq (7) is simplified due to eqn (16). The boundary conditions on a free y-side may be
written as

o0 _ av oV oW
e 7 =0 ——— = —— = = . [
/laY—ka Ay 0, ocaZ-l-/laY 0 at Y=0and/or1 (19)
Similarly, the condition of zero normal traction in eqn (8) is simplified due to eqn (16). The
boundary conditions on the lateral surfaces may be written as

oU  _ _
aﬁ-i—mW—O, 0‘52+

eV oW 4
ol

Y —(7=0 atZ=0and 1. (20)

L — =0,
oY

The solutions of eqn (18) may be obtained consistent with the boundary conditions

and the condition of zero dilatation, eqn (16), which, in terms of the reduced displacement
variables, is

.V oW )

—mU+A5?+a_éE_O. (21)

The possible forms of solutions for pure shear modes of vibration of six rectangular

plate configurations having two opposite sides simply supported are given in Table 1. The

Table 1. Frequency equations for pure shear modes of free vibration of rectangular plates simply supported on
two opposite sides and free on lateral surfaces

Plate Modal displacement functions Range of indices Mode, frequency (f)

S8SS u = mAcosmnXsinnnYsinknZ
v = nAdsinmnXcosnnYsinknZ mn=1,2 ... Twist
w= —kadsinmnXsinnn¥cosknZ k= h/(mja): +(n/b)* ni/m 4+ nt Al

u = nlAcosmnXsinnn¥ cosknZ

v = —mAsinmnXsinnnY cosknZ Twist and torsion
Ty Ty s ., -

w=20 mon k=0,1,2,... 72\/m2+n212+k2a2
SCSC, u=AsinnnYcosknZ m=10;1,2,... Twist and torsion
SSSC v=0,w=0 k=0,1,2,... I PEEY ol
SSSF, u=Asin 2n+1)(n/2)YcosknZ m={ Twist and torsion
SCSF v=0,w=0 nk=012,... 72/ @u+ 1) (22 + kPP
SSSF, u =mAcosmnXsinnny m= ni Twist
SFSF v= —nildsinmrXcosun¥, w=10 mn=12,... ym
SFSF u=mAcosmnXsinknZ m = ko Torsion

v=0,w= —kasinmnXcosknZ mk=12... ym

u= Acosnn¥YcosknZ m=10 Twist and torsion

v=0,w=0 nk=012... YA R

P1= o/ 3(1=v), v, = a/3(1—v)/2.
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pure shear modes of vibration may be of three types. With dilatation © = 0 in each case,
these modes are : a thickness-twist mode in which the transverse shear stresses Ty = T = 0,
a torsional mode in which the in-plane shear stress 7,, = 0, and a coupled thickness-twist-
torsional mode in which the in-plane shear and either or both of the transverse shear stresses
are nonzero. In each of the solutions given in Table 1, such modes are identified.

It needs to be mentioned here that the solutions for simply supported (SSSS) plates
given in Table 1 are actually included in the work of Srinivas et al. (1970a); these are
included here for completeness.

5. RESULTS AND DISCUSSION

Based on the analysis of the foregoing sections, the natural frequencies of the six types
of rectangular plates are obtained by the solution of three-dimensional elasticity equations.
In all cases, the Poisson’s ratio for the plate material is taken as v = 0.3. The results are
obtained for combinations of three aspect ratios a/b = 1,2, 1, and 2, and two thickness
ratios i/b = 0.1 and 0.2. The natural frequencies (f) being reported herein are in the
following dimensionless forms which is consistent with commonly used form of dimen-
sionless frequency in the plate literature.

= (B —n /6(1—1)Q (22)

where D = ER*/[12(1 —v?)] is the flexural rigidity of the plate.

Two factors of importance in the convergence and accuracy of differential quadrature
solutions are the weighting coefficients and the sampling points (Quan and Chang; 1989a,
b; Bert and Malik, 1996a). The weighting coefficients are obtained most accurately by the
explicit formulae of Quan and Chang (1989a) and the same are employed in the present
work as well. Based on past experience of the present investigators with quadrature solutions
of very many boundary-value and eigenvalue problems (Malik and Bert; 1996a, b), the
sampling points used in the present work are given, with reference to Fig. 2, as

_ 1—cos[(i—Dr/(V,— D]

Y,
! 2 k3

=1,2,...,N, (23)

and

1—cos [(j—D)n/(N,—3)]

Z] = Oa ZZ = 55 ZN:—] = l__69 ZN_, = 19 Zj+1 = 2

J=2,3,....(N.=3) (24)

in the Y and Z directions, respectively.

The results of the present investigations are given in Tables 2-10 and Figs 3 and 4. Of
these, the results of Tables 2—4 and Fig. 3 pertain to the convergence and accuracy of the
quadrature solutions. First, Table 2 provides some sample results showing the convergence
of the quadrature solution for a SSSS plate. The converged quadrature-solution values are
compared with the exact values which are calculated using the characteristic frequency
equation of Srinivas et a/. (1970a). It is apparent that the frequencies obtained by the DQM
solution actually match the exact values to at least as many as seven significant digits.

The SSSS piate is rather special since, in this case, the elasticity equations may be
reduced to ordinary differential equations in the Z-coordinate; Srinivas et al. (1970a)
derived the characteristic frequency equation from these equations only. These equations
are given in Appendix 1 for completeness; the corresponding quadrature analogs of these
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Table 2. Convergence of DQM solutions of reduced two-dimensional elasticity equations for natural frequencies
(/) of SSSS plates

Solution method

DQM solution: N, =9 Exacti

ab=12,hb=02,m=1,n=3

N, 12 13 14 15

I 3.177907 3.177956 3.177944 3.177943+ 3.177943
aib=1/2, h/b=02,m=2,n=1

N, 7 8 9 10

f 3.834173 3.834170 3.834168 3.834169+ 3.834169
alb=1,hb=01,m=2,n=2

N, 11 12 13 14

I 11.157342 11.157415 11.157411 11.157410% 11.157410
alb=1,/b=02m=1,n=3

N, 13 14 15 16

I 10.503674 10.503597 10.503588 10.5035901 10.503590
alb=2hb=01,m=5n=1

N, 8 9 10 11

! 40.840046 40.839882 40.839885 40.839886% 40.839886
alb=2,bb=01,m=3,n=2

N, 11 12 13 14

f 35.678647 35.679032 35.679014 35.679007+ 35.679009

t Converged value of DQM solution.
I Exact values calculated from the transcendental equation of Srinivas ez @/. (1970a) ; the same values are
given by the DQM solution of reduced one-dimensional elasticity equations with N. = 9.

Table 3. Effect of thickness ratio on the natural frequencies (f) of antisymmetric modes of rectangular plates
having two opposite edges simply supported

h/b ratio for elasticity solutions

Plate CPT
type aib m, n 0.2 0.1 0.02 0.01 0.005 solution
SSSS 1/2 1,1 1.531177 1.815133 1.956665 1.961786 1.962988 1.963495
SCSC 1 3,2 12.99564 17.98121 22.06286 22.25712 22.30661 22.31424
S8S8C 2 4,1 25.03306 30.09690 32.77021 32.87303 32.89453 32.89686
SSSF 1/2 1,4 3.481123 4.798997 5.833354 5.884730 5.898097 5.908996
SCSF 1 2,1 5.270254 6.163496 6.598192 6.609886 6.610726 6.637068
SFSF 2 2,3 18.62954 21.58862 23.19873 23.28252 23.29759 23.38027

equations are given in Appendix 2. Interestingly, the DQM solution of these one-dimen-
sional elasticity equations gives results matching with the exact values to at least seven
significant digits with as small as ¥, = 9 sampling points.

Table 2 demonstrates fast convergence of the quadrature solutions for SSSS plates and
that highly accurate results are obtainable with a moderate grid size with two-dimensional
elasticity equations. However, for other types of boundary conditions, convergence is rather
slow and fully converged solutions are obtained only with a larger number of grid points.
As one particular example, the convergence of quadrature solutions for square SCSC plates
is illustrated in Fig. 3, where each curve shows convergence of frequency values to at least
five significant digits. As may be seen in this particular case, the quadrature solution seems
to have reached its convergence for N, =21, N, = 17. In fact this number of sampling
points was found to be uniformly acceptable for all types of plates and all combinations of
aspect and thickness ratios in that any increase in either N, or N. beyond this number of
points added to the cost of computation for the frequency values changing only in the sixth
or higher digits.

As mentioned earlier, the DQM solutions are highly accurate with respect to exact
solutions of the SSSS plates. In fact, the DQM solutions have been found to exhibit the
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Table 4. Some comparisons of elasticity solutions for natural frequencies (f) of square plates with different
boundary conditions

Mode sequence number

Plate Solution 1 4 7 1 4 7
type method Thickness ratio, 2/ = 0.1 Thickness ratio, /b = 0.2
SCSC I 4.27479 — 16.3303 3.60265 7.22371 9.63249
I 4.27068 10.2469 16.3143 3.60027 7.21765 9.63118
111 4.26677 10.2470 16.2975 3.59831 7.21377 9.63060
SSSC I 3.57635 — 12.1649 3.16086 6.25862 9.44315
11 3.57358 10.2470 13.7437 3.15930 6.25826 9.44114
SSSF I 1.81132 6.10610 8.95666 1.70613 4.47833 7.24737
111 1.81362 6.10725 8.95479 1.70639 4.47695 7.24569
SCSF I 1.95279 6.16395 10.9079 1.81447 5.26986 -
1 1.95160 6.16350 10.9074 1.81408 5.27025 7.68521
SFSF I 1.50312 5.80105 — 1.43264 4.65715 5.75635
11 1.50341 5.79912 9.92131 1.43257 4.65741 5.75713
111 1.50338 5.79912 9.92088 1.43258 4.65738 5.75717

1: Spline prism method (Mizusawa and Takagi, 1995); I1: Ritz method (Liew et al., 1993, 1995} ; Iill: DQM
(present). Here, for consistent normalization, frequency values of Mizusawa and Takagi and Liew et al, are
multiplied by factors of a,/3(1 —v*)/n and n/?/2, respectively.

3.605 T T ————— :
]
First antisymmetric (1,1) mode 4
3.603 E
3.601
N,
3.589 15,17 A
"; SCSC Plate — :‘1’ ]
& 3.597 Aspect ratio = 1 3
§ Thickness ratio = 0.2 \\ 9
g 3505 b
- 5 10 15 20 25
2 18,002
. E
g 13.000 _ N First antisymmetric (3,2) mode _
a ]
12.998
; N,
12.996 15,17 E
é \Q 13 E
£ SCSC Plate 11 E
12.994 £ Aspect ratio = 1 —— E
Thickness ratio = 0.2 T
12992 Lo v 1 — e 4
5 10 15 20 25

Number of the y-direction sampling points, IV,

Fig. 3. Convergence of DQM solutions of reduced two-dimensional elasticity equations for natural
frequencies ( /) of SCSC plates.

same high level of accuracy with respect to the exact solutions of pure shear modes of all
six types of plate configurations as given in Table 1. Such comparisons are not included
here to avoid any repetitions and an overemphasis on the accuracy of the results. Never-
theless, some other assessment of accuracy of present results with respect to cases for which
results are necessarily obtained by numerical means only, would be worthwhile. As an
indirect evaluation of the accuracy of results of the present solution method, Table 3 shows
some sample results of the frequencies of six types of plates (including the exact case of
SSSS plate) for arbitrarily chosen modes and decreasing values of the thickness ratio (A/b) ;
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Table 5. Natural frequencies (f) of the first nine modes of SSSS and SCSC plates from the three-dimensional
elasticity theory solutions

SSSS plates SCSC plates
Thickness ratio (h/b)
alb 0.1 0.2 0.1 0.2
1,2 1.81513(1,1)a 1.28087(0,1)t 1.96322(1,1)a 1.28087(1,0)t
2.56174(0,1)t 1.53118(1,)a 2.56174(1,0)t 1.60289(1,1)a
2.78935(1,2)a 2.21970(1,2)a 3.15971(1,2)a 2.36604(1,2)a
427211(1,3)a 2.56174(1,0)t 4.77989(1,3)a 2.56174(2,0)t
5.12348(1,0)t 2.86411(1,1)t 5.12348(2,0)t 3.04235(1,2)s
5.35794(2,1)a 3.17794(1,3)a 5.39870(2,1)a 3.33291(1,3)a
5.72822(1,1)t 3.62284(1,2)t 6.08250(1,2)s 3.84261(3,00t
6.12471(1,4)a 3.83417(2,)a 6.25847(2,2)a 3.84607(2,1)a
7.24569(1,2)t 3.84261(0,3)t 6.67886(1,4)a 3.87521(1,1)s
i 3.03828(1.1)a 2.78935(1,1)a 4.26677(1,1)a 3.59831(1,1)a
7.26053(1,2)a 5.12348(1,0)t 7.85289(1,1)a 5.12348(1,0)t
10.2470(1,0)t 6.12471(1,2)a 9.49717(1,2)a 6.41155(2,1)a
11.1574(2,2)a 7.24569(1, )t 10.2470(1,0)t 7.21377(1,2)a
13.6058(1,3)a 8.87880(2,2)a 12.6388(2,2)a 9.05463(1,2)s
14.4914(1,1)t 10.2470(2,0)t 13.9040(3.1)a 9.46414(2,2)a
17.0884(2,3)a 10.5036(1,3)a 16.2975(1.3)a 9.63060(1,1)s
20.4939(2,0)t 11.4564(1,2)t 17.9812(3,2)a 10.2470(2,0)t
21.4318(1,4)a 12.1682(1,1)s 18.0874(1.2)a 10.6123(3,1)a
2 7.68882(1,1)a 7.26053(1,1)a 14.1590(1,1)a 12.0310(1,1)a
12.15312,1)a 10.2470(1,00t 17.0671(2,1)a 14.3932(2,)a
19.3681(3,1)a 11.1574(2,1)a 22.8011(3,1)a 19.0336(3,1)a
20.4939(1,0)t 17.0884(3,1)a 31.4116(4,1)a 20.4939(1,0)t
24.9535(1,2)a 20.4939(2,0t 35.0682(1,2)a 25.6462(4,1)a
29.0421(4,1)a 21.4318(1,2)s 37.9887(2,2)a 26.3189(1,1)s
35.6790(3,2)a 22.9129(1,1t 40.9878(1,0)t 26.7056(1,2)a
40.8399(5,1)a 24.4988(4,1)a 42.5027(3,2)a 28.8551(2,2)a
40.9878(2,0)t 28.9828(2,1)t 43.1119(3,2)a 32.5892(3,2)a

The letters a and s denote general modes in which in-plane displacement components are antisymmetric and
symmetric, respectively about the mid-plane ; the letter t denotes pure shear modes.

here the modes are chosen on the basis of classical theory solutions. As one would expect,
it may be seen that with plates becoming thinner, the frequencies in all cases approach to
the values of classical plate theory. Next, Table 4 shows a comparison of DQM solurions
with the recently published results of Mizusawa and Takagi (1995) and Liew et al. (1993,
1995). The table includes frequencies of three modes of five types of square plates for two
values of thickness ratios. It may be seen that there is a very close agreement between the
three sets of results which are indeed by three different methods of sotutions ; of course, the
DQM results are generally on a lower side than those of the other two solution methods.

Tables 5-7 provide natural frequencies of the first nine modes of the six types of plates
each for six combinations of aspect and thickness ratios. Of these results, the frequency
data of SSSS plates in Table 5 were obtained by quadrature solution of the reduced
one-dimensional (ordinary) differential equations with N, = 9. The frequency data of the
remaining plates were obtained by the quadrature solution of the reduced two-dimensional
differential equations with N, x N, = 21 x 17 grid points; on the basis of convergence
studies, it is believed that the present calculations have produced results accurate to at least
five significant digits, and for this reason, in all these tables, the frequencies are given to six
significant digits. However, it has to be emphasized that in these tables, the frequency data
of SSSS plates and of pure shear modes of all types of plates are exact.

It may be seen that the first nine mode frequencies of Tables 5-7 include general modes
as well as the pure shear modes ; in these tables, the two types of modes are appropriately
labelled by two digits in parentheses followed by the letters a, s, or t. For the general modes,
the two digits refer to the number of half-waves of the lateral displacement component w.
The symbols a and s refer, respectively, to the asymmetry and symmetry of the in-plane
displacement components (# and v) about the mid-plane. In fact, this identification has its
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Table 6. Natural frequencies (f) of the first nine modes of SSSC and SSSF plates from the three-dimensional
elasticity theory solutions

SSSC plates SSSF plates
Thickness ratio (4/b)
alb 0.1 0.2 0.1 0.2
172 1.88106(1,1)a 1.28087(1,0)t 1.28087(0,0)t 0.64063(0,0)t
2.56174(1,0)t 1.56457(1,)a 1.52681(1,1)a 1.31024(1,1)a
2.96617(1,2)a 2.29210(1,2)a 2.12503(1,2)a 1.74787(1,2)a
4.52279(1,3)a 2.56174(2.0)t 3.24030(1,3)a 1.92130(1,0)t
5.12348(2,0)t 2.66417(1,1)s 3.84261(1,0)t 2.33568(1,1)s
5.32814(1,1)s 3.25627(1.3)a 4.79900(1,4)a 2.50690(1,3)a
5.37728(2,1)a 3.83997(2,1)a 5.10632(2,1)a 2.78214(1,1)s
6.18931(2,D)a 3.84261(3.0)t 5.56477(1,1)s 3.20217(2,0)t
6.40339(1,1)s 4.20374(1,1)s 5.60660(2,2)a 3.48112(1,4)a
1 3.57358(1,ha 3.15930(1,1)a 1.81362(1,1)a 1.70639(1,1)a
7.52422(2,1)a 5.12348(1,0)t 4.17139(1,2)a 2.56174(0,0)t
8.34538(1,2)a 6.08246(1,1)s 5.12348(0,0)t 3.70138(1,2)a
10.2470(1,0)t 6.25826(2,Da 6.10725(2,Da 4.47695(1,1)s
11.8647(2,2)a 6.67851(1,2)a 8.50012(2,2)a 5.24095(2,1)a
12.1622(1,a 9.16841(2,2)a 8.88040(1,3)a 6.99150(2,2)a
13.7437(3,1)a 9.44114(1,1)s 8.95479(1,2)a 7.24569(1,1)t
14.9516(1,3)a 10.2470(2,0)t 12.5282(3,1)a 7.27160(1,3)a
17.5159(3,2)a 10.5557(3,1)a 12.9612(2,3)a 7.68521(1,0)t
2 10.5763(1,1)a 9.49506(1,1)a 2.52424(1,a 2.45092(1,1)a
14.2943(2,1)a 12.6372(2,1)a 7.24504(2,1)a 6.82558(2,1)a
20.8682(3,1)a 17.9800(3,1)a 11.5215(1,2)a 7.75970(1,1)s
29.9190(1,2)a 18.0871(1,1)s 14.6102(3,1)a 10.2470(0,0)t
30.0969(4,1)a 20.4939(1,0)t 15.5199(1,1)s 10.5692(1,2)a
33.3815(2,2)a 24.1654(1,2)a 16.6745(2,2)a 13.1718(3,1)a
36.1484(1,1)s 24.3298(2,1)s 20.4939(0,0)t 14.8055(2,2)a
39.2461(3,2)a 25.0331(4,1)a 24.2647(3,2)a 17.9078(2,1)s
40.9878(1,0)t 26.7140(2,2)a 24.4290(4,1)a 19.2867(1,1)s

The letters a and s denote general modes in which in-plane displacement components are antisymmetric and
symmetric, respectively about the mid-plane ; the letter t denotes pure shear modes.

basis in the classical and first-order shear deformable plate theories in which the in-plane
displacements are taken to be first-order asymmetric while lateral displacement is taken to
be uniform about the mid-plane. As it would be expected, in three-dimensional elasticity
solutions, with respect to the mid-plane, the lateral displacement modes are found to be
opposite to the modes of the in-plane displacements. In fact, for the first antisymmetric
mode (1, 1)a, the lateral displacements happen to be close to uniform about the mid-plane.
The symbol t denotes a pure shear mode. Referring to Table 1, the two digits associated
with pure shear modes denote either the indices m and # for SSSS plates or the two indices
in the expression of the u-displacement for the other types of plates.

The three-dimensional elasticity solutions can display an infinitely unlimited number
of frequencies for any vibration mode. However, the classical and first- and higher-order
shear deformable plate theories can display only a limited number of frequencies for each
mode of vibration. Of course, this limitation comes due to the degree of approximation in
the assumed form of displacement functions. Thus, the CPT gives only one frequency of
the first antisymmetric mode of vibration. The FSDPT defines the flexural mode by three
variables (two cross-sectional rotations in addition to w) and assumes the same linear form
of in-plane displacements (x and v) with respect to the through-thickness z-coordinate.
Consequently, the FSDPT vyields a set of three frequencies for an antisymmetric mode of
vibration. However, it should be noted that neither the CPT or FSDPT can display
symmetric modes of vibration. The HSDPT can display a larger number of frequencies
depending on the number of variables assumed to describe the flexural mode of vibration.
Also, a higher-order theory can display both antisymmetric and symmetric modes depend-
ing on the assumed variation of the displacements with respect to the z-coordinate. As
some specific examples, the higher-order theory of Reddy (Reddy, 1984 ; Reddy and Phan,
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Table 7. Natural frequencies (f) of the first nine modes of SCSF and SFSF plates from the three-dimensional

M. Malik and C. W, Bert

elasticity theory solutions

alb

SCSF plates

Thickness ratio (4/b)

SFSF plates

0.1

0.2

0.1

0.2

12

1.28087(0,0)t
1.54087(1,1)a
2.22912(1,2)a
3.43826(1,3)a
3.84261(1,0)t
4.73966(1,1)s
5.05581(1,4)a
5.10952(2,1)a
5.64240(2,2)a

1.95160(1,1)a
4.85573(1,2)a
5.12348(0,0)t
6.16350(2,1)a
8.91649(2,2)a
10.0383(1,3)a
10.9074(1,1)s
12.5542(3,1)a
13.7530(2,3)a

3.54166(1,1)a

7.80640(2,D)a
14.9092(1,2)a
14.9555(3,1)a
19.4229(2,2)a
20.4939(0,0)t
24.6540(4,1)a
26.4229(3,2)a
35.3058(1,1)s

0.64043(0,0)t
1.31756(1,1)a
1.79631(1,2)a
1.92130(1,0)t
2.36888(1,1)s
2.58114(1,3)a
3.20217(2,0)t
3.31632(1,2)s
3.55423(1,4)a

1.81408(1, l)a
2.56174(0,0)t
4.13040(1,2)a
5.27025(2, )a
5.45469(1, 1)s
7.18526(2,2)a
7.68521(1,0)t
7.81288(1,3)a
8.43511(1,1)s

3.37696(1, )a
7.25634(2, )a
10.2470(0,0)t
12.9325(1,2)a
13.3900(3,1)a
16.5216(2,2)a
17.6727(1, s
19.4008(1.1)s
21.0810(4,1)a

1.44978(1,Da
1.70641(1,2)a
2.48022(1,3)a
2.56174(1,0)t
3.70144(1,4)a
4.47695(1,2)s
5.04582(2,D)a
5.12348(2,0)t
5.14376(1,1)s

1.50338(1,1)a
2.45096(1,2)a
5.39715(1,3)a
5.79912(2,1)a
6.82565(2,2)a
7.75970(1,2)s
9.92088(2,3)a
10.2470(1,0)t
10.5695(1,4)a

1.50530(1, )a
4.21244(1,2)a
6.01351(2,1)a
9.80383(2,2)a

11.3358(2,2)s

13.3483(3,1)a
15.9201(1,3)a
17.4670(3.2)a
21.5886(2.3)a

1.25225(1,1)a
1.28087(1,0)t
1.43929(1,2)a
1.98683(1,3)a
2.23764(1,2)s
2.56174(2,0)t
2.57049(1,1)s
2.79030(1,4)a
3.62284(1,2)t

1.43258(1,1)a
2.24773(1,2)a
3.87942(1,2)s
4.65738(1,3)a
5.00899(2,1)a
5.12348(1,0)t
5.75717(2,2)a
7.24569(1,1)t
7.94732(2,3)a

1.48500(1,1)a
3.97004(1,2)a
5.66776(1,2)s
5.73034(2,)a
8.99092(2,2)s
12.1376(3,D)a
14.2662(1,3)a
15.4041(3,2)a
15.5177(2,2)a

The letters a and s denote general modes in which in-plane displacement components are antisymmetric and
symmetric, repsectively about the mid-plane ; the letter t denotes pure shear modes.

1985) has z and z* terms in the assumed form of u- and v-functions keeping the lateral
displacement w independent of the z-coordinate. Thus, this theory can display only the
antisymmetric modes of vibration. Another higher-order theory due to Cho et al. (1991)
has z, z%, and z* terms in u- and v-functions and z and z* terms in w-function. Consequently,
Cho et al. (1991) could obtain some of the symmetric mode frequencies along with some
antisymmetric modes.

As mentioned earlier, an exact three-dimensional elasticity solution for free vibration
of SSSS plates was reported by Srinivas et al. (1970a). This work contained some extensive
numerical results wherein the first nine mode frequencies were given for a set of values of
the parameter ./ (mh/a)® + (nh/b*). As may be noted, in the present work, the frequencies
are given in a conventional format with respect to the geometry of the plates. From this
point of view, the results of the SSSS plates given in the present paper should also be of
interest to the readers.

In Tables 5-7, the frequencies are sorted as of the first nine modes. Of course, these
frequencies can not be compared directly with the first nine mode frequencies based upon
the approximate theories. However, a meaningful quantitative comparison can be made on
the basis of similar modes of vibration. Such comparisons are given in Tables 8 and 9 on
the basis of the first, fifth, and ninth mode shapes of the CPT for all six types of plates with
three aspect ratios a/b = 1/2, 1, and 2, and two thickness ratios 4/b = 0.1 and 0.2. It should
be noted that the first, fifth, and ninth mode frequencies of the CPT are not necessarily the
same order frequencies from either FSDPT or elasticity solutions. Needless to say, the
frequencies from the CPT and FSDPT solutions are also obtained by the DQM and that
the accuracies of these solutions have been verified by comparisons with the available
solutions of the other investigators, for example with those of Leissa (1973) and Mizusawa
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Table 8. Comparison of natural frequencies (f) from classical (CPT), first-order shear deformable (FSDPT), and
three-dimensional elasticity (ELAST) solutions for SSSS, SCSC, and SSSC plates

CPT mode FSDPT with
sequence Shear Correction Factors
Plate alb # m, n CPT /12 5.6 5/(6—v) ELAST

Thickness ratio, 4.6 = 0.1

SSSS 1/2 I 1,1 1.96350 1.80831 1.80970 1.81497 1.81513
5 1,4 7.85398 6.05953 6.07211 6.12034 6.12471

1 5 2,3 20.4204 16.9525 16.9792 17.0816 17.0884

9 3,4 39.2699 28.9495 29.0177 29.2800 29.3073
2 1 1,1 7.85398 7.68065 7.68234 7.68877 7.68882

9 1,3 58.1195 50.4873 50.5500 50.7893 50.8016
SCSC 172 1 1,1 2.17816 1.95214 1.95414 1.96179 1.96322
5 2,2 8.22422 6.18479 6.19861 6.25176 6.25847

1 5 3,1 16.2682 13.8020 13.8216 13.8969 13.9040

9 4,1 27.1115 21.3802 21.4215 21.5798 21.5948

2 1 1,1 15.1615 14.0649 14.0767 14.1216 14.1590

9 1,2 40.4473 34,7387 34,7917 34.9947 35.0682
SSSC 1/2 1 I, 1 2.05605 1.87257 1.87421 1.88045 1.88106
S 2,2 8.02637 6.12010 6.13327 6.18381 6.18931

1 5 3,1 15.9584 13.6490 13.6676 13.7387 13.7437

9 4,1 26.8906 21.2997 21.3402 21.4956 21.5091

2 1 1,1 11.0337 10.5394 10.5447 10.5647 10.5763

9 4,2 54.8349 47.1125 47.1768 474228 47.4588

Thickness ratio, 2/b = 0.2

SSSS 1/2 1 1,1 1.96350 1.51488 1.51803 1.53009 1.53118
5 1,4 7.85398 4.18860 4.20512 4.26920 4.28098

1 5 2,3 20.4204 12.4832 12.5250 12.6868 12.7118

9 3,4 39.2699 19.3763 19.4584 19.7776 19.8407
2 1 1,1 7.85398 7.23325 7.23879 7.25989 7.26053

9 1,3 58.1195 39.0397 39.1522 39.5859 39.6426
SCSC 1/2 1 1,1 2.17816 1.58183 1.58568 1.60052 1.60289
5 2,2 8.22422 4.21853 4.23558 4.30182 4.31656

1 5 3,1 16.2682 10.4354 10.4677 10.5923 10.6123

9 4,1 27.1115 15.0676 15.1242 15.3437 15.3843

2 1 1,1 15.1615 11.8579 11.8857 11.9928 12.0310

9 1,2 40.4473 26.1888 26.2782 26.6252 26.7056
SSSC 1/2 1 1,1 2.05605 1.54620 1.54965 1.56294 1.56457
5 2,2 8.02637 420341 4.22018 4.28532 4.29854

1 5 3,1 15,9584 10.3845 10.4160 10.5378 10.5557

9 4,1 26.8906 15.0466 15.1029 15.3209 15.3599
2 1 1,1 11.0337 9.40897 9.42359 9.47956 9.49506

9 4,2 54.8349 36.0751 36.1830 36.5999 36.6737

(1993) ; these comparisons were reported in other works of the present investigators (Malik
and Bert, 1995; Bert and Malik, 1996c). For the FSDPT solutions, one needs a value of
the shear correction factor (SCF). Two commonly used values of the factor are 5/6 from
Reissner’s work (1945) and n%/12 from Mindlin’s work (1951). The FSDPT solutions in
Tables 8 and 9 are based on these two SCF values and a third value of 5/(6 —v) which was
derived by Wittrick (1987) through some very detailed analytical investigations on the exact
solutions of elasticity equations and Mindlin theory for simply supported plates.

Two other comparisons of the three types of solutions for the frequency of the first
antisymmetric (1, 1) mode of the six types of plates are given in Fig. 4 and Table 10. In
Fig. 4, the frequencies of square plates are plotted against thickness ratio 4/ ranging from
0.01 to 1; here the FSDPT frequencies are based on SCF value of n?/12. In Table 10, the
frequencies are for cubic parallelepipeds; here the FSDPT frequencies are based on all
three SCF values and ratios of the CPT and FSDPT frequencies with respect to the
corresponding elasticity values are included.
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Table 9. Comparison of natural frequencies () from classical (CPT), first-order shear deformable (FSDPT), and
three-dimensional elasticity (ELAST) solutions for SSSF, SCSF, and SFSF plates

CPT Mode FSDPT with
sequence Shear Correction Factors
Plate afb # m, n CPT /12 5/6 Si6—v) ELAST

Thickness ratio, 4/b = 0.1

SSSF 1/2 1 1,1 1.63916 1.52234 1.52335 1.52723 1.52681
5 2,1 6.32960 5.06238 5.07153 5.10658 5.10632
1 5 1,3 9.84542 8.84520 8.85274 8.88146 8.88040

9 1,4 18.4120 15.4736 15.4945 15.5745 15.5775
2 1 1,1 2.56793 2.52340 2.52373 2.52497 2.52424

9 4,2 37.6023 33.8674 33.8976 340127 34.0005
SCSF 1/2 1 i1 1.65927 1.53614 1.53721 1.54128 1.54087
5 1,4 6.46055 5.00471 5.01456 5.05236 5.05581

1 5 1,3 11.5224 9.97085 9.88505 10.0301 10.0383

9 3,1 14.4212 12.4824 12.4979 12.5570 12.5542
2 1 1,1 3.63119 3.53759 3.53838 3.54140 3.54166

9 S 1 40.5399 36.3706 36.4055 36.5384 36.5289
SFSF 1/2 1 1,1 1.54957 1.44568 1.44660 1.45010 1.44978
5 2,1 6.23698 5.00254 5.01151 5.04584 5.043582
I 5 2,2 7.43861 6.80554 6.81066 6.83021 6.82565

9 3,2 15.2853 13.0989 13.1158 13.1800 13.1719
2 1 1,1 1.51395 1.50502 1.50510 1.50540 1.50330

9 4,1 24.7931 23.1309 23.1456 23.2016 23.1965

Thickness ratio, #/b = 0.2

SSSF 1/2 1 1,1 1.6391¢ 1.29933 1.30172 1.31087 1.31024
5 2,1 6.32960 3.61116 3.62409 3.67416 3.67655
1 5 1.3 9.84542 7.19540 7.21054 7.26863 7.27160

9 1,4 18.4120 11.5511 11.5848 11.7145 11.7307
2 1 1,1 2.56793 2.44840 2.44928 2.45262 2.45092

9 4,2 37.6023 27.6788 27.7401 27.9756 27.9660
SCSF 1/2 1 1,1 1.65927 1.30635 1.30880 1.31818 1.31756
5 1.4 6.46055 3.48469 3.49709 3.54520 3.55423
1 5 1,3 11.5224 7.69856 7.71944 7.80011 7.81288
9 3,1 14.4212 9.64854 9.67582 9.78095 9.78137
2 1 1,1 3.63119 3.36336 3.36556 3.37396 3.37696

9 5,1 40.5399 29.4528 29.5226 29.7912 29.7839
SFSF 1/2 1 1,1 1.54957 1.24200 1.24421 1.25268 1.25225
5 2, 1 6.23698 3.57633 3.58910 3.63853 3.64142
1 5 2,2 7.43861 5.71215 5.72321 5.76565 5.75717

9 3,2 15.2853 10.0405 10.0691 10.1791 10.1691
2 1 1,1 1.51395 1.48396 1.48423 1.48526 1.48500

9 4,1 24,7931 19.8720 19.9074 20.0428 20.0360

The results in Fig. 4. and Tables 8--10 are in conformity with the well known fact that
the CPT overestimates the vibration frequencies quite in excess. In fact, rather commonly
accepted norms of using CPT for plate having the thickness less than one-tenth or one-
twentieth of the smaller side (h/b < 1/10 or 1/20) does not seem to be adequate. The
FSDPT frequencies with SCF values of 7?/12 and 5/6 are close underestimates of the three-
dimensional elasticity values for all six types of plate configurations; of the two factors,
Reissner’s value seems to be a better choice. Most interestingly, it is noted from Tables 8-
10 that in all the cases, the FSDPT frequencies with Wittrick’s shear correction factor
match most closely with the elasticity values. It is also noted that with Wittrick’s SCF
value, the FSDPT frequencies remain lower than the elasticity values for plates without
any free (vertical) sides, i.e. SSSS, SCSC, and SSSC plates. On the other hand, in some
cases of plates with free (vertical) sides, i.e., SSSF, SCSF, and SFSF plates, particularly
for A/b = 0.1, the FSDPT frequencies with Wittrick’s SCF value are slightly higher than
the elasticity values.
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Table 10. Comparison of the first antisymmetric mode frequencies from classical (CPT), first-order shear deform-
able (FSDPT), and three-dimensional elasticity (ELAST) solutions for six types of cubic parallelepipeds

FSDPT with
Shear Correction Factors
Cube CPT n/12 5/6 5/(6—v) ELAST
SSSS 3.14159 1.18569 1.19169 1.21514 1.22050
(2.574) (0.9715) (0.9764) (0.9936)
SCSC 4.60767 1.21012 1.21659 1.24200 1.25886
(3.660) (0.9613) (0.9664) (0.9866)
SSSC 3.76343 1.19406 1.20021 1.22433 1.21755
(3.091) (0.9807) (0.9856) (1.006)
SSSF 1.85965 0.84860 0.85195 0.86493 0.86150
(2.159) (0.9850) (0.9889) (1.004)
SCSF 2.01926 0.86492 0.86846 0.88219 0.88010
(2.294) (0.9828) (0.9868) (1.002)
SFSF 1.53288 0.76151 0.76458 0.77650 0.77575
(1.976) (0.9816) (0.9856) (1.001)

A value in parentheses is the ratio of the frequency value above it with the corresponding frequency from
elasticity solution.

5.0 25
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deformable theory

Dotted: Classical theory
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Fig. 4. A comparison of first antisymmetric mode frequencies from classical and first-order shear
deformable theories and three-dimensional elasticity solutions for six types of plates (SCF = n%/12
for FSDPT solutions).

In their work on simply supported plates, Srinivas et al. (1970a) compared the fre-
quencies from the CPT and FSDPT solutions with the exact values of the elasticity solution.
Srinivas ef al. (1970a) pointed that the FSDPT frequencies, which were based on SCF value
of 7?/12, were slightly lower than the exact values and that with a SCF value of 0.88, the
FSDPT values can be made ‘equal’ to the elasticity values. Here, the FSDPT frequencies
with SCF = 0.88 are not included for any further comparisons. However, it needs to be
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mentioned here that SCF = 0.88 does not really make the FSDPT frequencies equal to the
exact values even for SSSS plates; it gives frequencies slightly higher than those obtained
with Wittrick’s SCF value. Thus, compared to the Wittrick’s factor, SCF = 0.88 yields
FSDPT frequencies closer to the exact values for plates without free sides and farther away
from the exact values for plates with free sides. Wittrick’s formula, which was based on an
analysis of simply supported plates, shows dependence of the shear correction factor on
Poisson ratio. It seems that the shear correction factor should actually depend on the
boundary conditions as well as the geometric proportions of aspect ratio a/b and thickness
ratio h/b.

Before concluding this work, two last points are in order. First, it should be remarked
that the fundamental frequency of rectangular plates from the classical and first-order shear
deformable theories correspond to those of the first antisymmetric mode (1, 1)a. However,
as may be seen from the a/b = 1/2 frequencies of the SSSS, SCSC, and SCSF plates in
Tables 5-7, the fundamental frequency may actually be from the pure shear modes. Next,
it has to be realized that frequencies are scanned by trials. It is believed that the frequencies
in Tables 5-7 are the first nine mode frequencies ; the responsibility of any missing link is
entirely of the present investigators. It should be pointed out that some omissions do exist
in previous works, and these have been taken care of in the present work. As a specific
example, besides some other missing values, Mizusawa and Takagi (1995) have not included
pure shear mode frequencies in their results (this is the reason for some omissions in Table
4). Similarly some omissions have been found in frequency data of SSSS plates in the work
of Liew et al. (1993, 1995) who have presented frequencies of twelve modes of various types
of plates.

6. CONCLUDING REMARKS

The work for this paper was carried out with the objective of providing three-dimen-
sional elasticity solutions for the free vibrations of rectangular plates. The plates considered
were of the type having free lateral surfaces and two opposite sides having combinations
of simply supported, clamped, and free boundary conditions. However, the boundary
conditions at the other two opposite sides were taken to be simply supported ; this restriction
facilitated dimensional reduction in the governing equations from three to two and thereby,
the computational effort was considerably eased. With these limited boundary conditions,
the total number of plate configurations analyzed was six.

The numerical solution technique employed in the present work was the differential
quadrature method. The frequency data contained in this paper were prepared after exten-
sive convergence studies and validations for the accuracy of the results. The investigators
believe that the results produced in this paper are of very high accuracy and that there are
no missing links in mode sequences included in the results.

Acknowledgements—Some of the recent works on three-dimensional elasticity solutions were brought to notice
by an anonymous reviewer ; these helped greatly in giving up-to-date information in the paper.
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APPENDIX 1

Here, the case of a SSSS plate is considered. The displacement components expressed in the following form
satisfy the boundary conditions of both x- and y-sides.

U= U(Z)cosmXsina¥, V=WP(Z)sinmXcosa¥, W= W(Z)sinmXsinay (2%)

where fi = nr and n is an integer and U(Z), V(Z), and W(Z) are reduced displacement variables.
Using eqn (25) in eqn (1), one obtains
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The boundary conditions of the above equations are obtained by using eqn (25) in eqn (8) as

dUu - d - . l~v dw
- 7 = — 4 = sl L7
adZ +mW =0, de+niW 0, mU+ailV— a7

=0 atZ=0andl. @n

It is noted that the three-dimensional elasticity equations are reduced to one-dimensional equations described in
alinedomain0 < Z < 1.

APPENDIX 2

Using the quadrature rules, one obtains the quadrature analogs of eqn (26) as
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where i = 2, 3,..., N.— 1. The boundary conditions are implemented by writing the quadrature analogs of eqn

(27) at the boundary points { = 1 and »,. These are
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where i = 1 and &,.



